Counting Out Time:
Utilizing Zero Modified Count Regression
to Model Time-to-Degree Attainment

Daniel Jones-White
Peter Radcliffe
Ronald Huesman, Jr.
John Kellogg
Motivation to study time to degree

• External
 – Department of Education
 – Higher Education Act reauthorization
 – AAU Institutional Data Committee

• Internal
 – Transforming the U
 – Provost’s Task Force on Financial Aid, Retention, Graduation and Student Success
Transforming the U: Framework

Vision: Improve the Human Condition Through the Advancement of Knowledge

Mission: Extraordinary Education • Breakthrough Research • Dynamic Public Engagement

Goal: Become one of the Top Three Public Research Universities in the World

Exceptional Students
Recruit, educate, challenge, and graduate outstanding students who become highly motivated lifelong learners, leaders, and global citizens.

Exceptional Faculty and Staff
Recruit, mentor, reward, and retain world-class faculty and staff who are innovative, energetic, and dedicated to the highest standards of excellence.

Exceptional Organization
Be responsible stewards of resources, focused on service, driven by performance, and known as the best among our peers.

Exceptional Innovation
Inspire exploration of new ideas and breakthrough discoveries that address the critical problems and needs of the University, state, nation, and world.

Foundation for Success:
- Foster Culture of Excellence • Cultivate International Learning
- Advance Interdisciplinary Frontiers • Build Diverse Community • Generate Critical Resources • Account for Results

University of Minnesota
Critical metrics/measures

- Retention/graduation rates/time to degree
- Satisfaction levels
 - Advising and career support
 - Quality of instruction
 - Sense of community and support within the UMNTC environment
- Participation in “deep” learning experiences
 - Study abroad, internships, service learning, student government/leadership
- Learning and development outcomes—assessment issues
- Inclination to recommend UMNTC to others
- Alumni success factors
Project Background

- Building on our previous research on duration of enrollment for drop-outs
- Continued refinement of our institutional model of probability of graduation
- Elaborating the paths students take on their journey through higher education
Research Questions

• How many semesters does it take to earn a bachelors degree from the University of Minnesota?
• What are the factors that increase or decrease a student’s time-to-degree?
• Do these factors differ from those that relate to non-degree attainment?
TTD: Let me count the ways

• Elapsed time
 – From HS graduation or time of matriculation to degree?

• Enrolled time
 – Number of semesters (summers or not)
 – Credit hours earned (native & transfer)
 – Calendar time (years, months)
Measuring Time-to-Degree: The Semester Count Method

• Semester count is a natural measurement of time as it reflects a student’s experience.
• Semester count is relatively immune to stopout behavior that complicates elapsed time measurements.
• Semester count better captures the pace of enrollment than credit hour counts as most programs require similar total credit hours.
Independent Variables

• **Academic Background**: ACT Score, First Generation College, First Choice College, AP Credits, and Remedial Course.

• **First Semester Performance**: Course Completion Ratio, C Count, D Count, and W Count

• **Demographic Characteristics**: Female, Asian, Underrepresented Minority, Nonresident/International, and Athlete

• **Geographic Origin**: Out-of-state, Reciprocity
Independent Variables (cont.)

- **Social Integration**: On-campus Housing, Living Learning Community (LLC), Federal Work Study, and On-campus employment.
- **Financial Aid**: Need Aid Award, Loan Award, Merit Aid Award, and Remaining Unmet Need.
- **Post Matriculation Enrollment Patterns**: Inter-Program Transfer, Transfer Credits, Study Abroad, Number of Summer Sessions, Number of Semesters Under 13 Credits
Methodology

• Adopt a multivariate approach to modeling time-to-degree.

• Because our dependent variable takes a non-negative, interval value, OLS is not appropriate
 • What’s wrong with a little OLS? Long (1997) tells us that application of OLS for count data leads to “inefficient, inconsistent, and biased estimates.”
Modeling Count Data

- While count models appear to be infrequently applied to higher education literature, they are used in many of other fields.
- Examples include models of:
 - Beverage consumptions (Mullahy, 1986)
 - Consumer loan default (Greene, 1994)
 - Publications by doctoral student (Long, 1997)
Methodological Issues

• Poisson is rarely appropriate model specification for data
• Two problems with Poisson:
 – Overdispersion
 – Excess Zeros
• Negative Binomial is common solution to overdispersion, it is unable to solve our problem with excess zeros
Count Models

• The Poisson model is the starting place for models of count data.

• The model is represented by the equation

\[Pr(Y = y | \mu) = \frac{e^{-\mu} \mu^y}{y!}, \quad y = 0, 1, 2, ... \]
Count Models

- Observed
- Poisson (Predicted)
- NegBi (Predicted)
Zero Modified Count Regression

- Zero inflated count models
- Hurdle models

- Zero inflated models “change the mean structure to allow zeros to be generated by two distinct processes, compared with one process generating zeros in the hurdle model” (Long & Freese, 2003, p. 394)
Hurdle Models

• Our data is represented by **two distinct** data generating processes (graduation and time to degree)
• When this is the case hurdle models are preferred to zero inflated models (although the results for the two models have been demonstrated to be similar).
Hurdle Model

- Part 1 models the binary outcome and indicates if the hurdle is crossed:

\[
\Pr(y_i = 0|x_i) = \frac{\exp (x_i \gamma)}{1 + \exp (x_i \gamma)} = \pi_i
\]

- Part 2 models the truncated count:

\[
\Pr(y_i|x_i) = (1 - \pi_i) \Pr(y_i|y_i > 0, x_i) \text{ for } y > 0
\]
Hurdle Model
Results

• The following table presents the regression coefficients and standard errors.
• Recall that applications of regression analysis assume that observations are independent of one another.
• Because we are worried about independence within different colleges, we provide cluster robust standard errors.
• Robust standard errors protect against type 1 errors when evaluating t statistics.
Results: Academic Background

<table>
<thead>
<tr>
<th>Variable</th>
<th>Hurdle Model</th>
<th>Truncated Count</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coef.</td>
<td>Rob. SE</td>
</tr>
<tr>
<td>Composite ACT Score</td>
<td>0.001</td>
<td>0.012</td>
</tr>
<tr>
<td>First Generation Student</td>
<td>0.245</td>
<td>0.097*</td>
</tr>
<tr>
<td>First Choice College</td>
<td>-0.125</td>
<td>0.032***</td>
</tr>
<tr>
<td>Advance Placement Credits</td>
<td>-0.034</td>
<td>0.006***</td>
</tr>
<tr>
<td>Remedial Course</td>
<td>0.805</td>
<td>0.170***</td>
</tr>
</tbody>
</table>
Results: First Semester Performance

<table>
<thead>
<tr>
<th></th>
<th>Hurdle Model</th>
<th>Truncated Count</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coef.</td>
<td>Rob. SE</td>
</tr>
<tr>
<td>Course Completion Ratio</td>
<td>-0.032</td>
<td>0.002***</td>
</tr>
<tr>
<td>C Count</td>
<td>0.310</td>
<td>0.022***</td>
</tr>
<tr>
<td>D Count</td>
<td>0.600</td>
<td>0.088***</td>
</tr>
<tr>
<td>W Count</td>
<td>0.799</td>
<td>0.047***</td>
</tr>
</tbody>
</table>
Results: Demographic Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Hurdle Model</th>
<th>Truncated Count</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coef.</td>
<td>Rob. SE</td>
</tr>
<tr>
<td>Female</td>
<td>-0.044</td>
<td>0.109</td>
</tr>
<tr>
<td>Asian</td>
<td>-0.014</td>
<td>0.086</td>
</tr>
<tr>
<td>Underrepresented Minority</td>
<td>0.300</td>
<td>0.145</td>
</tr>
<tr>
<td>Nonresident/International Athlete</td>
<td>-0.433</td>
<td>0.481</td>
</tr>
<tr>
<td>Athlete</td>
<td>-0.586</td>
<td>0.178**</td>
</tr>
</tbody>
</table>
Results: Geographical Origin

Hurdle Model

<table>
<thead>
<tr>
<th>Location</th>
<th>Coef.</th>
<th>Rob. SE</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Out-of-State</td>
<td>0.350</td>
<td>0.132</td>
<td>***</td>
</tr>
<tr>
<td>Reciprocity State</td>
<td>0.155</td>
<td>0.137</td>
<td></td>
</tr>
</tbody>
</table>

Truncated Count

<table>
<thead>
<tr>
<th>Location</th>
<th>Coef.</th>
<th>Rob. SE</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-0.007</td>
<td>0.012</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.017</td>
<td>0.007*</td>
<td></td>
</tr>
</tbody>
</table>
Results: Social Integration

<table>
<thead>
<tr>
<th></th>
<th>Hurdle Model</th>
<th>Truncated Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coeff.</td>
<td>Rob. SE</td>
<td>Sig.</td>
</tr>
<tr>
<td>Living On Campus</td>
<td>-0.310</td>
<td>0.014</td>
</tr>
<tr>
<td></td>
<td>0.076 ***</td>
<td>0.008</td>
</tr>
<tr>
<td>Living Learning</td>
<td>-0.347</td>
<td>0.023</td>
</tr>
<tr>
<td>Community</td>
<td>0.076 ***</td>
<td>0.007 ***</td>
</tr>
<tr>
<td>Federal Work Study</td>
<td>0.056</td>
<td>-0.035</td>
</tr>
<tr>
<td></td>
<td>0.134</td>
<td>0.008 ***</td>
</tr>
<tr>
<td>On-Campus Job</td>
<td>0.037</td>
<td>-0.012</td>
</tr>
<tr>
<td></td>
<td>0.037</td>
<td>0.005 *</td>
</tr>
</tbody>
</table>
Results: Financial Aid

<table>
<thead>
<tr>
<th>Hurdle Model</th>
<th>Coef.</th>
<th>Rob. SE</th>
<th>Sig.</th>
<th>Truncated Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unmet Need Amount (in $100)</td>
<td>0.003</td>
<td>0.001</td>
<td>***</td>
<td>0.000</td>
</tr>
<tr>
<td>Need Aid Award</td>
<td>-0.079</td>
<td>0.082</td>
<td></td>
<td>0.004</td>
</tr>
<tr>
<td>Loan Award</td>
<td>0.292</td>
<td>0.091</td>
<td>**</td>
<td>0.002</td>
</tr>
<tr>
<td>Merit Award Award</td>
<td>-0.813</td>
<td>0.192</td>
<td>***</td>
<td>-0.010</td>
</tr>
</tbody>
</table>

*Note: Rob. SE refers to robust standard error, and Sig. indicates statistical significance: *** p < 0.001, ** p < 0.01, * p < 0.05.*
Results: Post Matriculation Enrollment Patterns

<table>
<thead>
<tr>
<th></th>
<th>Hurdle Model</th>
<th></th>
<th></th>
<th>Truncated Count</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coef.</td>
<td>Rob. SE</td>
<td>Sig.</td>
<td>Coef.</td>
<td>Rob. SE</td>
<td>Sig.</td>
</tr>
<tr>
<td>Within College Transfer</td>
<td>0.016</td>
<td>0.012</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Credits Transferred In</td>
<td>-0.004</td>
<td>0.000***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study Abroad</td>
<td>0.026</td>
<td>0.008**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of Summer Semesters Enrolled</td>
<td>0.013</td>
<td>0.003***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of Semester with < 13 Credits</td>
<td>0.047</td>
<td>0.002***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*** Significant at the 0.001 level
** Significant at the 0.01 level
* Significant at the 0.05 level
Overview of findings

• Less is known about time-to-degree than probability of graduation
• Rigor of previous curricula can give students a head start or force them to play catch-up
• On-campus work speeds time-to-degree
• Merit aid associated with increased likelihood of graduation, loans with decreased likelihood.
• Study abroad, summer enrollment, and part-time attendance associated with slower graduation
How have we responded?

• Instituted a 13-credit minimum and flat-rate tuition for full-time students
 – Credit loads have increased
 – Summer enrollment has decreased
• Founders Free Tuition Program
 – Aims to reduce reliance on loans for needy students
 – Now instituting a middle-class scholarship program
Current and future actions

• Focus on improving student engagement
• Increasing expectations for entering students to be prepared for college-level work
• Improving responsiveness of advising to keep students on track
• Curricular audit to identify and remove obstacles to program completion
Future research

• Expand specification of model with additional post-matriculation student experiences
• Compare results using alternative measures of time to degree (elapsed time or credits completed)
• Apply methodology to faculty career progression and time in rank
Download Paper & Presentation at...

http://www.irr.umn.edu/papers/

Session 491